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Highlights

(A) The ESC to EpiLC progression. (B) PCA of the transcriptome of pluripotent 
cells (adapted from [1]). (C) Trans-omic datasets used in the study [2]. 
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TF target identification in naive and 
formative networks via integrative learning
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Dense transcription factor hierarchies and permissive 
epigenetic landscape distinguish pluripotency states

A

(A) Target genes that are themselves TFs contribute more to 
the overall expression change in naive networks (yellow strip). 
(B) Correlation between the percentage of target genes that 
are themselves TFs and their contribution to overall 
expression change (as in A) for each TF. (C) Temporal 
H3K27me3 change at the promoters of TF target genes of 
naive and formative networks during pluripotency progression. 
(D) Temporal mRNA expression of TF target genes. (E) 
Proposed model of the permissive chromatin associated with 
formative target genes in naive pluripotency.
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Spatiotemporal mapping of transcriptional network 
rewiring during pluripotency progression in in vivo 
embryos
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Summary: Molecular roadmap of pluripotency transition 
Through a trans-omics approach, we identified target genes regulated by a panel of key TFs 
during pluripotency transition. We found naive transcriptional networks are governed by denser 
TF hierarchies. We also found permissive epigenomic signatures at formative TF target genes in 
the naive state, indicating that they are poised for expression prior to pluripotency transition. 
Finally, our reconstructed transcriptional networks enabled the precise spatiotemporal mapping 
of differentiating ESCs to mouse epiblasts.
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E

Introduction
Embryonic stem cells (ESCs) have the remarkable capacity to 
self-renewal and to differentiate into any cell type in the body. 
Understanding the regulatory networks underpinning the transition of 
ESCs to cells committed to distinct lineages is critical for stem cell 
therapy. Using machine learning of trans-omics data, we delineate 
the transcriptomic networks that govern pluripotency transition of 
mouse ESCs to epiblast-like cells (EpiLCs), thereby profiling the 
progression from naive to formative pluripotency.

Precise identification of target genes of TFs in pluripotency 
progression
Target genes of formative TFs are poised for induction in naive 
pluripotency
Dense TF hierarchies for signal propagation in naive pluripotency
Precise timing of transcriptional network rewiring in pluripotency 
progression

(A) Overview of integrative learning for TF target identification. (B) mRNA and 
protein profiles of AdaEnsemble-identified TF targets closely resemble those of 
their respective TFs. (C) Heatmap showing TF targets form two seperate 
transcriptional networks, naive and formative.

(A) Expression heatmap of TF targets reveals that substrates, like their 
respective TFs, largely split into naive and formative modules. (B) Temporal 
expression change pinpoint the transition between naive and formative state. (C) Time-resolved reconstructed 
transcriptional networks reveal rewiring of states point between 12-24 hours post-differentiation.
(D) Spatiotemporal mapping of the differentiating ESCs to in vivo epiblasts by activity of transcriptional networks.


